

 WarpEngine™

Required Technology for Today’s Network and Application Environments.

Your Business Might Not Survive Without it.

 1

Executive Summary

In computer networking, packet delay variation (PDV), more commonly referred to as jitter, can
be defined as random undesirable delays in consistent packet delivery, and it’s now the leading
cause of poor network throughput. Network jitter triggers corresponding application jitter, and
ultimately business process jitter that can have a devastating impact on employee productivity,
customer service and revenue. It’s driven by the nature of today’s network and application
environments, and how they interact with the most widely used network protocols.

Today’s streaming video, audio, fast data, IoT, voice, and web applications transmit data in
unpredictable bursts, becoming a source of jitter before packets even enter the network. In the
multi-tenant virtualized public or private cloud environments that increasingly host them, these
applications compete for virtual storage, memory, CPU and network resources. In turn, these
virtual resources compete for corresponding physical resources, leading to random scheduling
conflicts between VMs, hypervisor packet delays, and extra hops between virtual and physical
subnets, creating random delays that compound application jitter with virtualization jitter.
Volatile last mile wireless connections most users rely on for application access frequently
suffer from RF interference, fading and other issues that add still more jitter. Moreover, VPNs
that protect business and personal data have become yet another source of jitter by imposing
encryption/decryption delays at each network endpoint. All these factors combine to create
unprecedented levels of jitter that will become exponentially greater as live streaming, IoT and
similar applications proliferate, the move to cloud accelerates, and 5G rolls out.

The ultimate problem beyond the cumulative random delays outlined above, is that widely
used network protocols designed for guaranteed packet delivery such as TCP treat jitter as a
sign of congestion. They respond by retransmitting packets and throttling traffic to avoid data

 2

loss until throughput collapses and applications stall. This occurs even when plenty of
bandwidth is available, and not only TCP’s throughput is impacted.

For cost and operational efficiency reasons, applications using TCP often share the same
network and compete for bandwidth with applications using protocols like UDP that sacrifice
guaranteed delivery and tolerate packet loss in exchange for maximum speed. This makes UDP
and similar protocols a preferred option for many live video and audio streaming, VoIP, and p2p
applications, despite the pauses, skips and jumps. Since UDP doesn’t react to jitter as TCP does,
throughput is almost entirely a function of available bandwidth. Unfortunately, TCP’s inability
to determine whether jitter is due to congestion results in more bandwidth being allocated to
applications using TCP than would otherwise be the case. As a result, bandwidth that could be
available to UDP and other traffic is wasted, and the performance of all applications on a shared
network suffers.

WarpEngine™ is the only solution that recaptures this wasted bandwidth by eliminating jitter-
induced throughput collapse. WarpEngine combines this unique capability with other
performance enhancing features that deliver 2x to 10x or greater improvements in throughput
for TCP, UDP and other traffic on dedicated WAN, broadband internet, mobile, and Wi-Fi
networks. As a result, WarpEngine’s breakthrough technology delivers the maximum possible
ROI from existing network infrastructure. WarpEngine achieves this at a fraction of the cost and
with far superior results to the solution most IT organizations turn to – network upgrades.
Although upgrades increase bandwidth to allow more traffic through, they often result in a
corresponding increase in the incidence of jitter-induced throughput collapse. This means much
of the new bandwidth upgrades provide ends up being wasted because they fail to deal with
the root of the problem.

WarpEngine is a single-ended transparent network proxy that requires no changes to client or
server applications. In addition, there’s no client software to install, making WarpEngine much
easier to deploy and maintain, especially in distributed environments with remote users.
WarpEngine’s single-ended architecture also means it can be deployed at any point on a
network, ideally closest to the main source of jitter. This is a major differentiator with
traditional dual-ended optimization solutions that require control of both ends of the network –
an increasingly difficult requirement to meet in the cloud era.

WarpEngine comes in a range of deployment options supporting throughput of up to 400 Gbps,
with 200 million concurrent sessions, and over one million new connections per second.
WarpEngine can be installed as a hardware appliance in an ISP’s core network, or in front of
hundreds or thousands of servers in a corporate data center, working in conjunction with ADCs,
SD-WANs and other existing infrastructure.

 3

WarpEngine is interoperable with GTP, enabling it to be deployed at cell tower base stations to
optimize mobile networks. To boost Wi-Fi network performance, WarpEngine can be installed
in front of access points in large public venue or private Wi-Fi networks to boost upload and
download throughput by up to 10x. The WarpGateway™ version of WarpEngine is designed to
deliver similar benefits for smaller scale Wi-Fi networks in branch offices, small businesses,
retail and hospitality. In larger distributed organizations, WarpGateway can be installed in
branch offices to eliminate poor local Wi-Fi network throughput, complementing WarpEngine
in the corporate data center.

WarpVM™ is an extension of WarpEngine packaged as a VM for deployment entirely in AWS,
Microsoft Azure, Google Cloud or any other public or private cloud environment. WarpVM is
ideal for a wide range of use cases including: enterprise cloud and hybrid cloud applications;
SaaS vendors seeking to boost performance; content delivery networks (CDNs); eCommerce
sites requiring fast page loads; and video on demand (VOD) and video streaming services.

WarpEngine can also be distributed as white-label software on an OEM partner’s hardware, or
as part of their software stack.

To gain a deeper understanding of how WarpEngine maximizes ROI from existing network
infrastructure, and succeeds in today’s network and application environments where other
solutions fail, it’s important to start by looking at TCP’s reaction to jitter in greater detail.

TCP’s Reaction to Jitter

When TCP was designed over 30 years ago, the focus was on guaranteeing orderly packet
delivery between endpoints. Based on the nature of applications and networks deployed at the
time, the underlying assumption was that network packets would arrive in relatively consistent

 4

intervals unless the network became congested.

To guarantee packet delivery and guard against data loss, TCP relies on two variables to
measure congestion and control throughput: (1) a Retransmission Timeout (RTO) value based
on a moving average calculation of the Round-Trip Time (RTT) for each packet to be sent and an
acknowledgement (ACK) to be received; and (2) a Congestion Window (CWND) that defines the
maximum amount of data that can be transmitted through a connection. TCP sets its
retransmission timer to the RTO value as it’s sending each packet. If an ACK isn’t received
before the retransmission timer expires, the packet is flagged as dropped and then
retransmitted. With each retransmission attempt the RTO value is increased and CWND is
decreased to reduce throughput to avoid further packet loss, on the assumption the network is
congested. After three RTOs throughput is halved. After seven RTOs throughput collapses
because TCP treats the packets as lost rather than merely delayed, and prevents any packets
from being sent. After a sub-second waiting period, TCP begins its recovery process by
incrementally increasing CWND with each successful packet transmission, until it reaches its
pre-collapse level. This means TCP’s recovery process effectively doubles the impact of RTOs by
doubling the amount of time available bandwidth is underutilized, and throughput is
suboptimal.

Contrary to TCP’s original design assumptions, today’s streaming applications generate network
traffic characterized by periodic bursts of data, causing significant variation in RTT. This is
compounded by the virtualized environments they often run in, and the volatile last mile
wireless networks users often access them from. RTT variance like PDV, is another term for
jitter. It triggers spurious RTOs when ACKs don’t arrive from the receiver as expected. Even
though plenty of bandwidth is available, TCP responds to spurious RTOs as if the network is
congested. It begins the process of reducing throughput until it collapses, and then
incrementally recovers to its pre-collapse level, as shown in the image below.

TCP’s response to spurious RTOs triggered by jitter wastes bandwidth that could otherwise be
allocated to UDP and other traffic. As a result, the performance of all applications on a shared
network suffers. While some optimization solutions try to address the symptoms, most don’t
tackle jitter-induced throughput collapse at all, and only one eliminates the root cause.

 5

Eliminating the Root Cause of Jitter-Induced Throughput Collapse

Like TCP, most optimization solutions pre-date today’s jittery network
environments and weren’t really designed for them, despite what
many vendors claim. The Open Systems Interconnection (OSI) model,
which divides network functionality into seven layers, provides a
useful framework for understanding the benefits and drawbacks of the
types of solutions available, and the extent to which they address
TCP’s response to jitter. They include:

• Upgrading network bandwidth – a costly and disruptive
physical layer one approach that allows more traffic through,
but often results in a corresponding increase in the incidence
of jitter-induced throughput collapse, making it counter-
productive

• Multiprotocol Label Switching (MPLS) – introduced in the 1990s, MPLS operates at
layers two and three, the data link and network layers responsible for routing packets to
a destination. MPLS ensures performance by using packet labels to force high priority
application traffic over pre-determined paths with guaranteed bandwidth allocations.
MPLS also aids performance by eliminating the overhead of routing table lookups and
independent forwarding decisions at each network hop. Despite these benefits, MPLS
doesn’t focus on jitter, and it’s intended for dedicated WAN links, so its packet labels
have no meaning on the internet

• WAN optimization – these tools operate primarily at layer seven, the application layer.
Introduced around the same time and often used in conjunction with MPLS, they rely on
caching, deduplication, and compression to accelerate traffic by reducing its volume.
These techniques require payload access, which wasn’t a problem initially. However,
now that more than 80% of all network traffic is encrypted, it has become a major
drawback because it introduces the performance overhead of encryption/decryption
delays at each endpoint – another source of jitter. Payload access also imposes the
administrative overhead and security risk of exposing sensitive encryption keys to third
party vendor tools, which public web sites will never provide. This highlights another
significant problem with these solutions – their dual-ended architecture assumes you
always have control of both ends of the network, which isn’t realistic in today’s
environment

• SD-WAN – a more recent addition to the ranks of network performance solutions, SD-
WAN makes it possible to offload branch office internet and cloud-bound traffic from
leased line and MPLS links to less expensive broadband. The architectural and cost
advantages are obvious. However, there’s also a widespread assumption that SD-WAN
can optimize performance merely by choosing the best available path among
broadband, LTE, 5G, MPLS, Wi-Fi or any other available link. The problem is SD-WAN

 6

makes decisions based on measurements at the edge, but has no control beyond it.
What if all paths are bad? Some SD-WAN vendors bundle in WAN optimization
solutions, but they come with all the drawbacks noted above. SD-WAN vendors also
typically incorporate traffic shaping features that reserve bandwidth for high priority
applications, by throttling low priority application traffic. However, traffic shaping
doesn’t optimize bandwidth for high priority applications by preventing jitter-induced
throughput collapse. In addition, it can’t be an end-to-end solution if there isn’t control
over both ends of the network

• Jitter buffers –order and evenly space packets to realign packet timing for consistency
before they’re passed to the receiver. Jitter buffers may work for some applications, but
they can destroy performance for real-time applications like live video and audio
streaming, and create random delays that add to jitter

• TCP Optimization – to successfully attack the root cause of jitter-induced throughput
collapse, the focus must be on layer four, the transport layer. This is where TCP’s
congestion control algorithms become a bottleneck by reducing throughput in reaction
to jitter having nothing to do with congestion. Some TCP optimization solutions try to
address this bottleneck by managing the size of TCP’s congestion window (CWND) to let
more traffic through a connection, using selective ACKs that notify the sender of which
packets need to be retransmitted, adjusting idle timeouts and tweaking a few other
parameters. While these techniques can offer some modest improvement, generally in
the range of 10% - 15%, they don’t eliminate jitter-induced throughput collapse, the
resulting waste of bandwidth, or its impact on UDP and other traffic.

Jitter-induced throughput collapse can only be resolved in the transport layer by modifying or
replacing TCP’s congestion control algorithms to remove the bottleneck they create. However,
to be acceptable and scale in a production environment, a viable solution can’t require changes
to the TCP stack itself, or any client or server applications. It will also have to co-exist with
ADCs, SD-WANs, VPNs and other network infrastructure.

Only WarpEngine Eliminates the Root Cause of Jitter-Induced Throughput Collapse

Only Badu Networks’ WarpEngine addresses the key requirements outlined above for
eliminating the root cause of jitter-induced throughput collapse. In addition, WarpEngine
provides other enhancements beyond removing the bottleneck created by TCP’s response to
jitter, that further improve throughput for TCP, UDP and all traffic on shared networks.
Implemented as a transparent proxy, WarpEngine’s proprietary algorithms determine if
bandwidth is available to a TCP session in real-time. The impact of transient fluctuations in RTT
(jitter) and packet loss that trigger RTOs having nothing to do with congestion are filtered out.

 7

As shown in the image above, if an RTO occurs due to actual congestion, WarpEngine’s
congestion control behaves as TCP’s would to protect against packet loss. However, spurious
RTOs caused by jitter rather than actual congestion don’t result in throughput collapse, the
extended recovery period of reduced throughput, and the loss of available bandwidth that
normally follows. As a result, WarpEngine recaptures bandwidth that would otherwise be
wasted.

This means less bandwidth can be allocated for applications using TCP, since jitter-induced
throughput collapse is eliminated and TCP’s traffic is optimized. Bandwidth for UDP and other
traffic is freed up without negatively impacting TCP’s performance. WarpEngine can also be
configured to prioritize UDP and other non-TCP traffic over shared networks to enhance their
throughput even further without impacting optimized TCP traffic.

WarpEngine’s algorithmic approach to optimization offers another key advantage now that
over 80% of internet traffic is encrypted. Since WarpEngine doesn’t rely on compression and
deduplication which require payload access, it eliminates encryption/ decryption delays
at each endpoint that increase jitter, as well as the maintenance overhead and security risk of
exposing sensitive keys to a third-party solution. Performance and throughput stay at
consistently high levels for all types of traffic – encrypted, unencrypted, or compressed.

WarpEngine Architecture

WarpEngine’s single-ended proxy architecture enables it to be installed at any point on the
network, ideally closest to the main source of jitter. TCP streams arriving at the proxy are
terminated, allowing WarpEngine to take over TCP congestion control and provide other
performance enhancements without modifying the TCP stack on the client or server. UDP and
other non-TCP sessions are not terminated at the proxy. However, WarpEngine can be
configured to prioritize UDP and other non-TCP sessions, and enable them to take advantage of
other throughput boosting features described below.

WarpEngine consists of two components that work hand in hand to prevent jitter-induced
throughput collapse, optimize the use of all available bandwidth, and maximize performance
for all traffic over shared networks regardless of protocol:

 8

• A de-bottleneck module that implements WarpEngine’s proprietary algorithms which
determine if jitter is due to congestion based on bandwidth available to each TCP
session in real time, and prevent TCP from reducing the size of CWND

 and unnecessarily throttling throughput if it’s not

• A Transparent Proxy that implements TCP session splicing by splitting the connection
between the server and the client into two independent sessions. Each spliced server-
to-client TCP session is replaced by a server-to-proxy sub-session and a proxy-to-client
sub-session. The two sub-sessions have independent sequence numbers and ACK flows.
WarpEngine retains the IP addresses and port numbers associated with the original TCP
session source and destination to map them to the new sub-sessions.

This session independence enables WarpEngine to implement its own flow control algorithms
based on speed matching that are far superior to TCP’s. With speed matching, the proxy
receives as many packets as possible, as fast as possible, buffers them, and then forwards them
to their destination at different speeds and times. Speed-matching enables another
performance enhancing feature - opportunistic bursting. Opportunistic bursting allows
WarpEngine to fill unused gaps in bandwidth with TCP as well as UDP and other non-TCP
packets that would otherwise be stalled. These capabilities are implemented in a multi-core,
multi-threaded architecture capable of supporting throughput of over 400 Gbps, with 200
million parallel sessions, and over one million new connections per second in its maximum
configuration. This level of scalability enables use cases beyond the reach of any other solution.

Finally, although WarpEngine is transparent to users, it dramatically improves one of the most
visible aspects of user experience - page load times. Browsers only support establishment of
two to four TCP sessions simultaneously, whereas a web page can easily have over 100 objects,
each requiring its own TCP session to send and receive data. Since WarpEngine connections
with the browser are independent of the server and the traffic is optimized, the client will send
the next HTTP request much sooner than it normally would. As a result, web pages typically
load 2x-3x faster. To put the significance of this improvement in perspective, Amazon
calculated that a page load slowdown of just one second costs them $1.6 billion in sales each
year.

WarpEngine Provides the Bridge to 5G

RF interference, fading and channel access conflicts frequently cause RTOs leading to jitter-
induced throughput collapse in today’s 4G LTE networks. In the busy high-speed, small cell, low
RTT networks planned for 5G, the impact of RTOs will be devastating, resulting in more jitter-
induced throughput collapse than ever, despite the dramatic increase in bandwidth. In addition,
LTE networks will serve as the backup for 5G, just as 3G networks have done for LTE. The
failover will need to be as seamless as possible, without too dramatic a degradation in
performance.

 9

Forward-looking MNOs recognize these issues and test WarpEngine on both their existing 4G
LTE and prototype 5G networks. Their results typically show WarpEngine improving existing LTE
network throughput by up to 3x or more, and similar improvements for 5G. These results
indicate WarpEngine can enable MNOs to control the timing and cost of 5G rollouts by:

• Dramatically improving service and maximizing ROI from existing LTE networks that will
provide failover for 5G

• Potentially reducing the number of 5G cells MNOs need to deploy by recapturing bandwidth
that would otherwise be wasted due to jitter-induced throughput collapse.

Conclusion

Random delays that create jitter filter up from the transport layer into the application layer,
and finally into the business process layer where they impact not only throughput and
application performance, but also employee productivity, customer service, and revenue. The
MPLS, SD-WAN, WAN optimization, traffic shaping and other solutions that traditionally
support network performance operate primarily in the application, network and data link
layers. They do an effective job of prioritizing traffic, preventing packet loss, and reducing
latency in some instances, so they have a role to play. However, by not focusing on the
transport layer they have become much less effective due to the increasingly jitter-prone
nature of today’s application traffic, the fact that the bulk of it is encrypted or compressed, and
travels at least partially over volatile wireless links. The rapid and continuing move to the
cloud, the proliferation of IoT, fast data and other streaming applications that transmit packets
in random unpredictable bursts, combined with the rollout of busy high-speed, small cell 5G
networks will only intensify the impact of jitter, and increase the incidence of jitter-induced
throughput collapse in the years ahead. WarpEngine is the only solution capable of eliminating
jitter-induced throughput collapse in today’s network environments, and future-proofing them
against ever-increasing jitter. Your business might not survive without it. See it in action now!

© 2020 Badu Networks. All Rights Reserved

https://www.badunetworks.com/demo

	WarpEngine Architecture
	Conclusion
	Random delays that create jitter filter up from the transport layer into the application layer, and finally into the business process layer where they impact not only throughput and application performance, but also employee productivity, customer ser...
	© 2020 Badu Networks. All Rights Reserved

